Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
67 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
452 tokens/sec
Kimi K2 via Groq Premium
190 tokens/sec
2000 character limit reached

ASRC-SNN: Adaptive Skip Recurrent Connection Spiking Neural Network (2505.11455v1)

Published 16 May 2025 in cs.NE

Abstract: In recent years, Recurrent Spiking Neural Networks (RSNNs) have shown promising potential in long-term temporal modeling. Many studies focus on improving neuron models and also integrate recurrent structures, leveraging their synergistic effects to improve the long-term temporal modeling capabilities of Spiking Neural Networks (SNNs). However, these studies often place an excessive emphasis on the role of neurons, overlooking the importance of analyzing neurons and recurrent structures as an integrated framework. In this work, we consider neurons and recurrent structures as an integrated system and conduct a systematic analysis of gradient propagation along the temporal dimension, revealing a challenging gradient vanishing problem. To address this issue, we propose the Skip Recurrent Connection (SRC) as a replacement for the vanilla recurrent structure, effectively mitigating the gradient vanishing problem and enhancing long-term temporal modeling performance. Additionally, we propose the Adaptive Skip Recurrent Connection (ASRC), a method that can learn the skip span of skip recurrent connection in each layer of the network. Experiments show that replacing the vanilla recurrent structure in RSNN with SRC significantly improves the model's performance on temporal benchmark datasets. Moreover, ASRC-SNN outperforms SRC-SNN in terms of temporal modeling capabilities and robustness.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube