Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 42 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Fourier Low-rank and Sparse Tensor for Efficient Tensor Completion (2505.11261v1)

Published 16 May 2025 in cs.LG and stat.ME

Abstract: Tensor completion is crucial in many scientific domains with missing data problems. Traditional low-rank tensor models, including CP, Tucker, and Tensor-Train, exploit low-dimensional structures to recover missing data. However, these methods often treat all tensor modes symmetrically, failing to capture the unique spatiotemporal patterns inherent in scientific data, where the temporal component exhibits both low-frequency stability and high-frequency variations. To address this, we propose a novel model, \underline{F}ourier \underline{Lo}w-rank and \underline{S}parse \underline{T}ensor (FLoST), which decomposes the tensor along the temporal dimension using a Fourier transform. This approach captures low-frequency components with low-rank matrices and high-frequency fluctuations with sparsity, resulting in a hybrid structure that efficiently models both smooth and localized variations. Compared to the well-known tubal-rank model, which assumes low-rankness across all frequency components, FLoST requires significantly fewer parameters, making it computationally more efficient, particularly when the time dimension is large. Through theoretical analysis and empirical experiments, we demonstrate that FLoST outperforms existing tensor completion models in terms of both accuracy and computational efficiency, offering a more interpretable solution for spatiotemporal data reconstruction.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube