Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FALCON: False-Negative Aware Learning of Contrastive Negatives in Vision-Language Pretraining (2505.11192v3)

Published 16 May 2025 in cs.CV and cs.AI

Abstract: False negatives pose a critical challenge in vision-language pretraining (VLP) due to the many-to-many correspondence between images and texts in large-scale datasets. These false negatives introduce conflicting supervision signals that degrade the learned embedding space and diminish the effectiveness of hard negative sampling. In this paper, we propose FALCON (False-negative Aware Learning of COntrastive Negatives), a learning-based mini-batch construction strategy that adaptively balances the trade-off between hard and false negatives during VLP. Rather than relying on fixed heuristics, FALCON employs a negative mining scheduler that dynamically selects negative samples of appropriate hardness for each anchor instance during mini-batch construction, guided by a proxy for cross-modal alignment improvement. Experimental results demonstrate that FALCON significantly improves performance across two widely adopted VLP frameworks (ALBEF, BLIP-2) and a broad range of downstream tasks and evaluation settings, underscoring its effectiveness and robustness in mitigating the impact of false negatives.

Summary

We haven't generated a summary for this paper yet.