Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Approximation and Generalization Abilities of Score-based Neural Network Generative Models for Sub-Gaussian Distributions (2505.10880v1)

Published 16 May 2025 in cs.LG and stat.ML

Abstract: This paper studies the approximation and generalization abilities of score-based neural network generative models (SGMs) in estimating an unknown distribution $P_0$ from $n$ i.i.d. observations in $d$ dimensions. Assuming merely that $P_0$ is $\alpha$-sub-Gaussian, we prove that for any time step $t \in [t_0, n{O(1)}]$, where $t_0 \geq O(\alpha2n{-2/d}\log n)$, there exists a deep ReLU neural network with width $\leq O(\log3n)$ and depth $\leq O(n{3/d}\log_2n)$ that can approximate the scores with $\tilde{O}(n{-1})$ mean square error and achieve a nearly optimal rate of $\tilde{O}(n{-1}t_0{-d/2})$ for score estimation, as measured by the score matching loss. Our framework is universal and can be used to establish convergence rates for SGMs under milder assumptions than previous work. For example, assuming further that the target density function $p_0$ lies in Sobolev or Besov classes, with an appropriately early stopping strategy, we demonstrate that neural network-based SGMs can attain nearly minimax convergence rates up to logarithmic factors. Our analysis removes several crucial assumptions, such as Lipschitz continuity of the score function or a strictly positive lower bound on the target density.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets