Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

LongFuncEval: Measuring the effectiveness of long context models for function calling (2505.10570v1)

Published 30 Apr 2025 in cs.SE

Abstract: Multiple recent studies have documented LLMs' (LLMs) performance on calling external tools/functions. Others focused on LLMs' abilities to handle longer context lengths. At the intersection of these areas lies another interesting problem: LLMs' abilities to accurately perform function calls in long context settings. Particularly, when calling tools, LLMs are encumbered by three predominant challenges: (1) a large catalog of tools, (2) long responses from the tool APIs, and (3) long multi-turn conversations. These challenges are particularly relevant to enterprise applications of LLMs which engage in multi-turn conversations with users to complete complex tasks that require a large catalog of complex tools. The literature contains multiple investigations of long context challenges such as lost in the middle or needle in the haystack for natural language tasks. In this paper, we make the first attempt to comprehensively study the long context understanding capabilities of these models in the tool calling setup. We modify existing benchmarks for challenge 1 and 3, and create a new evaluation set for challenge 2 to enable this analysis. We gradually increase the input context length and also vary the position of the answer in the input. When evaluated with several long context models, we observe a performance drop of 7% to 85% as the number of tools increases, a 7% to 91% degradation in answer retrieval as the tool responses length increases, and 13% and 40% degradation for as multi-turn conversations get longer. Our study shows that LLMs still struggle with long context in tool calling settings, motivating future research to drive further LLM improvements.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube