Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Spike-timing-dependent Hebbian learning as noisy gradient descent (2505.10272v1)

Published 15 May 2025 in cs.LG, math.ST, and stat.TH

Abstract: Hebbian learning is a key principle underlying learning in biological neural networks. It postulates that synaptic changes occur locally, depending on the activities of pre- and postsynaptic neurons. While Hebbian learning based on neuronal firing rates is well explored, much less is known about learning rules that account for precise spike-timing. We relate a Hebbian spike-timing-dependent plasticity rule to noisy gradient descent with respect to a natural loss function on the probability simplex. This connection allows us to prove that the learning rule eventually identifies the presynaptic neuron with the highest activity. We also discover an intrinsic connection to noisy mirror descent.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube