Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RAIDEN-R1: Improving Role-awareness of LLMs via GRPO with Verifiable Reward (2505.10218v1)

Published 15 May 2025 in cs.CL

Abstract: Role-playing conversational agents (RPCAs) face persistent challenges in maintaining role consistency. To address this, we propose RAIDEN-R1, a novel reinforcement learning framework that integrates Verifiable Role-Awareness Reward (VRAR). The method introduces both singular and multi-term mining strategies to generate quantifiable rewards by assessing role-specific keys. Additionally, we construct a high-quality, role-aware Chain-of-Thought dataset through multi-LLM collaboration, and implement experiments to enhance reasoning coherence. Experiments on the RAIDEN benchmark demonstrate RAIDEN-R1's superiority: our 14B-GRPO model achieves 88.04% and 88.65% accuracy on Script-Based Knowledge and Conversation Memory metrics, respectively, outperforming baseline models while maintaining robustness. Case analyses further reveal the model's enhanced ability to resolve conflicting contextual cues and sustain first-person narrative consistency. This work bridges the non-quantifiability gap in RPCA training and provides insights into role-aware reasoning patterns, advancing the development of RPCAs.

Summary

We haven't generated a summary for this paper yet.