Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
47 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
88 tokens/sec
DeepSeek R1 via Azure Premium
79 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

Improving the Euclidean Diffusion Generation of Manifold Data by Mitigating Score Function Singularity (2505.09922v1)

Published 15 May 2025 in cs.LG

Abstract: Euclidean diffusion models have achieved remarkable success in generative modeling across diverse domains, and they have been extended to manifold case in recent advances. Instead of explicitly utilizing the structure of special manifolds as studied in previous works, we investigate direct sampling of the Euclidean diffusion models for general manifold-constrained data in this paper. We reveal the multiscale singularity of the score function in the embedded space of manifold, which hinders the accuracy of diffusion-generated samples. We then present an elaborate theoretical analysis of the singularity structure of the score function by separating it along the tangential and normal directions of the manifold. To mitigate the singularity and improve the sampling accuracy, we propose two novel methods: (1) Niso-DM, which introduces non-isotropic noise along the normal direction to reduce scale discrepancies, and (2) Tango-DM, which trains only the tangential component of the score function using a tangential-only loss function. Numerical experiments demonstrate that our methods achieve superior performance on distributions over various manifolds with complex geometries.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.