Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Fair In-Context Learning with Tabular Foundation Models (2505.09503v2)

Published 14 May 2025 in cs.LG

Abstract: Tabular foundational models have exhibited strong in-context learning (ICL) capabilities on structured data, allowing them to make accurate predictions on test sets without parameter updates, using training examples as context. This emerging approach positions itself as a competitive alternative to traditional gradient-boosted tree methods. However, while biases in conventional machine learning models are well documented, it remains unclear how these biases manifest in tabular ICL. The paper investigates the fairness implications of tabular ICL and explores three preprocessing strategies--correlation removal, group-balanced demonstration selection, and uncertainty-based demonstration selection--to address bias. Comprehensive experiments indicate that uncertainty-based demonstration selection consistently enhances group fairness of in-context predictions. The source code for reproducing the results of this work can be found at https://github.com/patrikken/Fair-TabICL.

Summary

We haven't generated a summary for this paper yet.