Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Beyond General Prompts: Automated Prompt Refinement using Contrastive Class Alignment Scores for Disambiguating Objects in Vision-Language Models (2505.09139v1)

Published 14 May 2025 in cs.CV

Abstract: Vision-LLMs (VLMs) offer flexible object detection through natural language prompts but suffer from performance variability depending on prompt phrasing. In this paper, we introduce a method for automated prompt refinement using a novel metric called the Contrastive Class Alignment Score (CCAS), which ranks prompts based on their semantic alignment with a target object class while penalizing similarity to confounding classes. Our method generates diverse prompt candidates via a LLM and filters them through CCAS, computed using prompt embeddings from a sentence transformer. We evaluate our approach on challenging object categories, demonstrating that our automatic selection of high-precision prompts improves object detection accuracy without the need for additional model training or labeled data. This scalable and model-agnostic pipeline offers a principled alternative to manual prompt engineering for VLM-based detection systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)