Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Predictive Digital Twins with Quantified Uncertainty for Patient-Specific Decision Making in Oncology (2505.08927v1)

Published 13 May 2025 in cs.CE, physics.comp-ph, and physics.med-ph

Abstract: Quantifying the uncertainty in predictive models is critical for establishing trust and enabling risk-informed decision making for personalized medicine. In contrast to one-size-fits-all approaches that seek to mitigate risk at the population level, digital twins enable personalized modeling thereby potentially improving individual patient outcomes. Realizing digital twins in biomedicine requires scalable and efficient methods to integrate patient data with mechanistic models of disease progression. This study develops an end-to-end data-to-decisions methodology that combines longitudinal non-invasive imaging data with mechanistic models to estimate and predict spatiotemporal tumor progression accounting for patient-specific anatomy. Through the solution of a statistical inverse problem, imaging data inform the spatially varying parameters of a reaction-diffusion model of tumor progression. An efficient parallel implementation of the forward model coupled with a scalable approximation of the Bayesian posterior distribution enables rigorous, but tractable, quantification of uncertainty due to the sparse, noisy measurements. The methodology is verified on a virtual patient with synthetic data to control for model inadequacy, noise level, and the frequency of data collection. The application to decision-making is illustrated by evaluating the importance of imaging frequency and formulating an optimal experimental design question. The clinical relevance is demonstrated through a model validation study on a cohort of patients with publicly available longitudinal imaging data.

Summary

We haven't generated a summary for this paper yet.