Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

An Efficient Multi-scale Leverage Effect Estimator under Dependent Microstructure Noise (2505.08654v1)

Published 13 May 2025 in stat.ME, econ.EM, and q-fin.ST

Abstract: Estimating the leverage effect from high-frequency data is vital but challenged by complex, dependent microstructure noise, often exhibiting non-Gaussian higher-order moments. This paper introduces a novel multi-scale framework for efficient and robust leverage effect estimation under such flexible noise structures. We develop two new estimators, the Subsampling-and-Averaging Leverage Effect (SALE) and the Multi-Scale Leverage Effect (MSLE), which adapt subsampling and multi-scale approaches holistically using a unique shifted window technique. This design simplifies the multi-scale estimation procedure and enhances noise robustness without requiring the pre-averaging approach. We establish central limit theorems and stable convergence, with MSLE achieving convergence rates of an optimal $n{-1/4}$ and a near-optimal $n{-1/9}$ for the noise-free and noisy settings, respectively. A cornerstone of our framework's efficiency is a specifically designed MSLE weighting strategy that leverages covariance structures across scales. This significantly reduces asymptotic variance and, critically, yields substantially smaller finite-sample errors than existing methods under both noise-free and realistic noisy settings. Extensive simulations and empirical analyses confirm the superior efficiency, robustness, and practical advantages of our approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.