Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

Evaluating LLM Metrics Through Real-World Capabilities (2505.08253v1)

Published 13 May 2025 in cs.AI

Abstract: As generative AI becomes increasingly embedded in everyday workflows, it is important to evaluate its performance in ways that reflect real-world usage rather than abstract notions of intelligence. Unlike many existing benchmarks that assess general intelligence, our approach focuses on real-world utility, evaluating how well models support users in everyday tasks. While current benchmarks emphasize code generation or factual recall, users rely on AI for a much broader range of activities-from writing assistance and summarization to citation formatting and stylistic feedback. In this paper, we analyze large-scale survey data and usage logs to identify six core capabilities that represent how people commonly use LLMs: Summarization, Technical Assistance, Reviewing Work, Data Structuring, Generation, and Information Retrieval. We then assess the extent to which existing benchmarks cover these capabilities, revealing significant gaps in coverage, efficiency measurement, and interpretability. Drawing on this analysis, we use human-centered criteria to identify gaps in how well current benchmarks reflect common usage that is grounded in five practical criteria: coherence, accuracy, clarity, relevance, and efficiency. For four of the six capabilities, we identify the benchmarks that best align with real-world tasks and use them to compare leading models. We find that Google Gemini outperforms other models-including OpenAI's GPT, xAI's Grok, Meta's LLaMA, Anthropic's Claude, DeepSeek, and Qwen from Alibaba-on these utility-focused metrics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube