Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
45 tokens/sec
GPT-5 Medium
37 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
91 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
103 tokens/sec
2000 character limit reached

Evaluating Financial Sentiment Analysis with Annotators Instruction Assisted Prompting: Enhancing Contextual Interpretation and Stock Prediction Accuracy (2505.07871v1)

Published 9 May 2025 in cs.CL and cs.AI

Abstract: Financial sentiment analysis (FSA) presents unique challenges to LLMs that surpass those in typical sentiment analysis due to the nuanced language used in financial contexts. The prowess of these models is often undermined by the inherent subjectivity of sentiment classifications in existing benchmark datasets like Financial Phrasebank. These datasets typically feature undefined sentiment classes that reflect the highly individualized perspectives of annotators, leading to significant variability in annotations. This variability results in an unfair expectation for LLMs during benchmarking, where they are tasked to conjecture the subjective viewpoints of human annotators without sufficient context. In this paper, we introduce the Annotators' Instruction Assisted Prompt, a novel evaluation prompt designed to redefine the task definition of FSA for LLMs. By integrating detailed task instructions originally intended for human annotators into the LLMs' prompt framework, AIAP aims to standardize the understanding of sentiment across both human and machine interpretations, providing a fair and context-rich foundation for sentiment analysis. We utilize a new dataset, WSBS, derived from the WallStreetBets subreddit to demonstrate how AIAP significantly enhances LLM performance by aligning machine operations with the refined task definitions. Experimental results demonstrate that AIAP enhances LLM performance significantly, with improvements up to 9.08. This context-aware approach not only yields incremental gains in performance but also introduces an innovative sentiment-indexing method utilizing model confidence scores. This method enhances stock price prediction models and extracts more value from the financial sentiment analysis, underscoring the significance of WSB as a critical source of financial text. Our research offers insights into both improving FSA through better evaluation methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.