Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 205 tok/s Pro
2000 character limit reached

Emotion-Gradient Metacognitive RSI (Part I): Theoretical Foundations and Single-Agent Architecture (2505.07757v1)

Published 12 May 2025 in cs.AI and cs.LG

Abstract: We present the Emotion-Gradient Metacognitive Recursive Self-Improvement (EG-MRSI) framework, a novel architecture that integrates introspective metacognition, emotion-based intrinsic motivation, and recursive self-modification into a unified theoretical system. The framework is explicitly capable of overwriting its own learning algorithm under formally bounded risk. Building upon the Noise-to-Meaning RSI (N2M-RSI) foundation, EG-MRSI introduces a differentiable intrinsic reward function driven by confidence, error, novelty, and cumulative success. This signal regulates both a metacognitive mapping and a self-modification operator constrained by provable safety mechanisms. We formally define the initial agent configuration, emotion-gradient dynamics, and RSI trigger conditions, and derive a reinforcement-compatible optimization objective that guides the agent's development trajectory. Meaning Density and Meaning Conversion Efficiency are introduced as quantifiable metrics of semantic learning, closing the gap between internal structure and predictive informativeness. This Part I paper establishes the single-agent theoretical foundations of EG-MRSI. Future parts will extend this framework to include safety certificates and rollback protocols (Part II), collective intelligence mechanisms (Part III), and feasibility constraints including thermodynamic and computational limits (Part IV). Together, the EG-MRSI series provides a rigorous, extensible foundation for open-ended and safe AGI.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)