Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Langevin Diffusion Approximation to Same Marginal Schrödinger Bridge (2505.07647v1)

Published 12 May 2025 in math.PR and stat.ML

Abstract: We introduce a novel approximation to the same marginal Schr\"{o}dinger bridge using the Langevin diffusion. As $\varepsilon \downarrow 0$, it is known that the barycentric projection (also known as the entropic Brenier map) of the Schr\"{o}dinger bridge converges to the Brenier map, which is the identity. Our diffusion approximation is leveraged to show that, under suitable assumptions, the difference between the two is $\varepsilon$ times the gradient of the marginal log density (i.e., the score function), in $\mathbf{L}2$. More generally, we show that the family of Markov operators, indexed by $\varepsilon > 0$, derived from integrating test functions against the conditional density of the static Schr\"{o}dinger bridge at temperature $\varepsilon$, admits a derivative at $\varepsilon=0$ given by the generator of the Langevin semigroup. Hence, these operators satisfy an approximate semigroup property at low temperatures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.