Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PromptIQ: Who Cares About Prompts? Let System Handle It -- A Component-Aware Framework for T2I Generation (2505.06467v1)

Published 9 May 2025 in cs.CV and cs.HC

Abstract: Generating high-quality images without prompt engineering expertise remains a challenge for text-to-image (T2I) models, which often misinterpret poorly structured prompts, leading to distortions and misalignments. While humans easily recognize these flaws, metrics like CLIP fail to capture structural inconsistencies, exposing a key limitation in current evaluation methods. To address this, we introduce PromptIQ, an automated framework that refines prompts and assesses image quality using our novel Component-Aware Similarity (CAS) metric, which detects and penalizes structural errors. Unlike conventional methods, PromptIQ iteratively generates and evaluates images until the user is satisfied, eliminating trial-and-error prompt tuning. Our results show that PromptIQ significantly improves generation quality and evaluation accuracy, making T2I models more accessible for users with little to no prompt engineering expertise.

Summary

We haven't generated a summary for this paper yet.