Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RAP-SM: Robust Adversarial Prompt via Shadow Models for Copyright Verification of Large Language Models (2505.06304v1)

Published 8 May 2025 in cs.CR

Abstract: Recent advances in LLMs have underscored the importance of safeguarding intellectual property rights through robust fingerprinting techniques. Traditional fingerprint verification approaches typically focus on a single model, seeking to improve the robustness of its fingerprint.However, these single-model methods often struggle to capture intrinsic commonalities across multiple related models. In this paper, we propose RAP-SM (Robust Adversarial Prompt via Shadow Models), a novel framework that extracts a public fingerprint for an entire series of LLMs. Experimental results demonstrate that RAP-SM effectively captures the intrinsic commonalities among different models while exhibiting strong adversarial robustness. Our findings suggest that RAP-SM presents a valuable avenue for scalable fingerprint verification, offering enhanced protection against potential model breaches in the era of increasingly prevalent LLMs.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com