Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

A Scaling Law for Token Efficiency in LLM Fine-Tuning Under Fixed Compute Budgets (2505.06150v2)

Published 9 May 2025 in cs.CL and cs.AI

Abstract: We introduce a scaling law for fine-tuning LLMs under fixed compute budgets that explicitly accounts for data composition. Conventional approaches measure training data solely by total tokens, yet the number of examples and their average token length -- what we term \emph{dataset volume} -- play a decisive role in model performance. Our formulation is tuned following established procedures. Experiments on the BRICC dataset \cite{salavati2024reducing} and subsets of the MMLU dataset \cite{hendrycks2021measuringmassivemultitasklanguage}, evaluated under multiple subsampling strategies, reveal that data composition significantly affects token efficiency. These results motivate refined scaling laws for practical LLM fine-tuning in resource-constrained settings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.