Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Benchmarking Vision, Language, & Action Models in Procedurally Generated, Open Ended Action Environments (2505.05540v2)

Published 8 May 2025 in cs.CV and cs.LG

Abstract: Vision-language-action (VLA) models represent an important step toward general-purpose robotic systems by integrating visual perception, language understanding, and action execution. However, systematic evaluation of these models, particularly their zero-shot generalization capabilities in procedurally out-of-distribution (OOD) environments, remains limited. In this paper, we introduce MultiNet v0.2, a comprehensive benchmark designed to evaluate and analyze the generalization performance of state-of-the-art VLMs and VLAs - including GPT-4o, GPT-4.1, OpenVLA, Pi0 Base, and Pi0 FAST - on diverse procedural tasks from the Procgen benchmark. Our analysis reveals several critical insights: (1) all evaluated models exhibit significant limitations in zero-shot generalization to OOD tasks, with performance heavily influenced by factors such as action representation and task complexity; (2) VLAs generally outperforms other models due to their robust architectural design; and (3) VLM variants demonstrate substantial improvements when constrained appropriately, highlighting the sensitivity of model performance to precise prompt engineering. We release our benchmark, evaluation framework, and findings to enable the assessment of future VLA models and identify critical areas for improvement in their application to out-of-distribution digital tasks.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com