Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Efficient Parallel Ising Samplers via Localization Schemes (2505.05185v1)

Published 8 May 2025 in cs.DS

Abstract: We introduce efficient parallel algorithms for sampling from the Gibbs distribution and estimating the partition function of Ising models. These algorithms achieve parallel efficiency, with polylogarithmic depth and polynomial total work, and are applicable to Ising models in the following regimes: (1) Ferromagnetic Ising models with external fields; (2) Ising models with interaction matrix $J$ of operator norm $|J|_2<1$. Our parallel Gibbs sampling approaches are based on localization schemes, which have proven highly effective in establishing rapid mixing of Gibbs sampling. In this work, we employ two such localization schemes to obtain efficient parallel Ising samplers: the \emph{field dynamics} induced by \emph{negative-field localization}, and \emph{restricted Gaussian dynamics} induced by \emph{stochastic localization}. This shows that localization schemes are powerful tools, not only for achieving rapid mixing but also for the efficient parallelization of Gibbs sampling.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com