Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 205 tok/s Pro
2000 character limit reached

CAG-VLM: Fine-Tuning of a Large-Scale Model to Recognize Angiographic Images for Next-Generation Diagnostic Systems (2505.04964v2)

Published 8 May 2025 in cs.CV

Abstract: Coronary angiography (CAG) is the gold-standard imaging modality for evaluating coronary artery disease, but its interpretation and subsequent treatment planning rely heavily on expert cardiologists. To enable AI-based decision support, we introduce a two-stage, physician-curated pipeline and a bilingual (Japanese/English) CAG image-report dataset. First, we sample 14,686 frames from 539 exams and annotate them for key-frame detection and left/right laterality; a ConvNeXt-Base CNN trained on this data achieves 0.96 F1 on laterality classification, even on low-contrast frames. Second, we apply the CNN to 243 independent exams, extract 1,114 key frames, and pair each with its pre-procedure report and expert-validated diagnostic and treatment summary, yielding a parallel corpus. We then fine-tune three open-source VLMs (PaliGemma2, Gemma3, and ConceptCLIP-enhanced Gemma3) via LoRA and evaluate them using VLScore and cardiologist review. Although PaliGemma2 w/LoRA attains the highest VLScore, Gemma3 w/LoRA achieves the top clinician rating (mean 7.20/10); we designate this best-performing model as CAG-VLM. These results demonstrate that specialized, fine-tuned VLMs can effectively assist cardiologists in generating clinical reports and treatment recommendations from CAG images.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube