Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
106 tokens/sec
Gemini 2.5 Pro Premium
53 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
109 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
515 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Geometric Fault-Tolerant Neural Network Tracking Control of Unknown Systems on Matrix Lie Groups (2505.04725v1)

Published 7 May 2025 in eess.SY, cs.AI, cs.RO, cs.SY, and math.DS

Abstract: We present a geometric neural network-based tracking controller for systems evolving on matrix Lie groups under unknown dynamics, actuator faults, and bounded disturbances. Leveraging the left-invariance of the tangent bundle of matrix Lie groups, viewed as an embedded submanifold of the vector space $\R{N\times N}$, we propose a set of learning rules for neural network weights that are intrinsically compatible with the Lie group structure and do not require explicit parameterization. Exploiting the geometric properties of Lie groups, this approach circumvents parameterization singularities and enables a global search for optimal weights. The ultimate boundedness of all error signals -- including the neural network weights, the coordinate-free configuration error function, and the tracking velocity error -- is established using Lyapunov's direct method. To validate the effectiveness of the proposed method, we provide illustrative simulation results for decentralized formation control of multi-agent systems on the Special Euclidean group.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube