Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Perturbation Analysis of Singular Values in Concatenated Matrices (2505.01427v2)

Published 11 Mar 2025 in cs.LG and stat.ML

Abstract: Concatenating matrices is a common technique for uncovering shared structures in data through singular value decomposition (SVD) and low-rank approximations. The fundamental question arises: How does the singular value spectrum of the concatenated matrix relate to the spectra of its individual components? In the present work, we develop a perturbation technique that extends classical results such as Weyl's inequality to concatenated matrices. We setup analytical bounds that quantify stability of singular values under small perturbations in submatrices. The results demonstrate that if submatrices are close in a norm, dominant singular values of the concatenated matrix remain stable enabling controlled trade-offs between accuracy and compression. These provide a theoretical basis for improved matrix clustering and compression strategies with applications in the numerical linear algebra, signal processing, and data-driven modeling.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)