Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Simulating Thin-Film Processes at the Atomic Scale Using Machine Learned Force Fields (2505.01118v1)

Published 2 May 2025 in cond-mat.mtrl-sci and cs.LG

Abstract: Atomistic modeling of thin-film processes provides an avenue not only for discovering key chemical mechanisms of the processes but also to extract quantitative metrics on the events and reactions taking place at the gas-surface interface. Molecular dynamics (MD) is a powerful computational method to study the evolution of a process at the atomic scale, but studies of industrially relevant processes usually require suitable force fields, which are in general not available for all processes of interest. However, machine learned force fields (MLFF) are conquering the field of computational materials and surface science. In this paper, we demonstrate how to efficiently build MLFFs suitable for process simulations and provide two examples for technologically relevant processes: precursor pulse in the atomic layer deposition of HfO2 and atomic layer etching of MoS2.

Summary

We haven't generated a summary for this paper yet.