Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Multi-Objective Reinforcement Learning for Water Management (2505.01094v1)

Published 2 May 2025 in cs.LG and cs.AI

Abstract: Many real-world problems (e.g., resource management, autonomous driving, drug discovery) require optimizing multiple, conflicting objectives. Multi-objective reinforcement learning (MORL) extends classic reinforcement learning to handle multiple objectives simultaneously, yielding a set of policies that capture various trade-offs. However, the MORL field lacks complex, realistic environments and benchmarks. We introduce a water resource (Nile river basin) management case study and model it as a MORL environment. We then benchmark existing MORL algorithms on this task. Our results show that specialized water management methods outperform state-of-the-art MORL approaches, underscoring the scalability challenges MORL algorithms face in real-world scenarios.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.