Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A stabilized march approach to adjoint-based sensitivity analysis of chaotic flows (2505.00838v1)

Published 1 May 2025 in math.NA, cs.NA, and math.OC

Abstract: Adjoint-based sensitivity analysis is of interest in computational science due to its ability to compute sensitivities at a lower cost with respect to several design parameters. However, conventional sensitivity analysis methods fail in the presence of chaotic flows. Popular approaches to chaotic sensitivity analysis of flows involve the use of the shadowing trajectory. The state-of-the-art approach computes the shadowing trajectory by solving a least squares minimization problem, resulting in a space-time linear system of equations. The current paper computes the adjoint shadowing trajectory using the stabilized march, by specifying the adjoint boundary conditions instead of solving a minimization problem. This approach results in a space-time linear system that can be solved through a single backward substitution of order $\mathcal{O}(n_u2)$ with $n_u$ being the dimension of the unstable subspace. It is proven to compute sensitivities that converge to the true sensitivity for large integration times and that the error in the sensitivity due to the discretization is of the order of the local truncation error of the scheme. The approach is numerically verified on the Lorentz 63 and Kuramoto-Sivasinsky equations.

Summary

We haven't generated a summary for this paper yet.