Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Partial integration based regularization in BEM for 3D elastostatic problems: The role of line integrals (2505.00713v1)

Published 9 Apr 2025 in math.NA and cs.NA

Abstract: The Boundary Element Method (BEM) is a powerful numerical approach for solving 3D elastostatic problems, particularly advantageous for crack propagation in fracture mechanics and half-space problems. Despite its benefits, BEM faces significant challenges related to dense system matrices and singular integral kernels. The computational expense can be mitigated using various fast methods; this study employs the Chebyshev interpolation-based Fast Multipole Method (FMM). To handle singular kernels, several analytical and numerical integration or regularization techniques exist. One such technique combines partial integration with Stokes' theorem to transform hyper-singular and strong singular kernels into weakly singular ones. However, applying Stokes' theorem introduces line integrals in half-space problems and with FMM, where the geometry is partitioned into near-field and far-field regions and must be treated as an open surface. In this paper, the necessary line integrals for strongly singular and hyper-singular kernels are presented and their significance in the aforementioned problems is demonstrated.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.