Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter-Efficient Fine-Tuning with Circulant and Diagonal Vectors (2505.00580v1)

Published 1 May 2025 in cs.LG

Abstract: Foundation models have achieved tremendous success in different domains. However, their huge computation and storage complexity make these models difficult to fine-tune and also less applicable in practice. Recent study shows training in Fourier domain can be an effective fine-tuning method in terms of both model performance and number of training parameters. In this work, we propose to further reduce the complexity by the factorization through the product of interleaved circulant and diagonal matrices. In addition, we address the case of non-square fine-tuning weights by partitioning the circulant matrix into blocks. Our method avoids the construction of weight change matrix and utilizes 1D fast Fourier transform (FFT) instead of 2D FFT. Experimental results show that our method achieves similar or better performance across various tasks with much less floating-point operations (FLOPs) and the number of trainable parameters.

Summary

We haven't generated a summary for this paper yet.