Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Mechanistic Interpretability of Neural Networks for Causality in Bio-statistics (2505.00555v1)

Published 1 May 2025 in stat.AP and cs.AI

Abstract: Interpretable insights from predictive models remain critical in bio-statistics, particularly when assessing causality, where classical statistical and machine learning methods often provide inherent clarity. While Neural Networks (NNs) offer powerful capabilities for modeling complex biological data, their traditional "black-box" nature presents challenges for validation and trust in high-stakes health applications. Recent advances in Mechanistic Interpretability (MI) aim to decipher the internal computations learned by these networks. This work investigates the application of MI techniques to NNs within the context of causal inference for bio-statistics. We demonstrate that MI tools can be leveraged to: (1) probe and validate the internal representations learned by NNs, such as those estimating nuisance functions in frameworks like Targeted Minimum Loss-based Estimation (TMLE); (2) discover and visualize the distinct computational pathways employed by the network to process different types of inputs, potentially revealing how confounders and treatments are handled; and (3) provide methodologies for comparing the learned mechanisms and extracted insights across statistical, machine learning, and NN models, fostering a deeper understanding of their respective strengths and weaknesses for causal bio-statistical analysis.

Summary

We haven't generated a summary for this paper yet.