Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

MATCHA: Can Multi-Agent Collaboration Build a Trustworthy Conversational Recommender? (2504.20094v1)

Published 26 Apr 2025 in cs.IR, cs.CL, and cs.HC

Abstract: In this paper, we propose a multi-agent collaboration framework called MATCHA for conversational recommendation system, leveraging LLMs to enhance personalization and user engagement. Users can request recommendations via free-form text and receive curated lists aligned with their interests, preferences, and constraints. Our system introduces specialized agents for intent analysis, candidate generation, ranking, re-ranking, explainability, and safeguards. These agents collaboratively improve recommendations accuracy, diversity, and safety. On eight metrics, our model achieves superior or comparable performance to the current state-of-the-art. Through comparisons with six baseline models, our approach addresses key challenges in conversational recommendation systems for game recommendations, including: (1) handling complex, user-specific requests, (2) enhancing personalization through multi-agent collaboration, (3) empirical evaluation and deployment, and (4) ensuring safe and trustworthy interactions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.