Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
27 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
458 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Advances in Approximate Bayesian Inference for Models in Epidemiology (2504.19698v1)

Published 28 Apr 2025 in stat.ME and stat.CO

Abstract: Bayesian inference methods are useful in infectious diseases modeling due to their capability to propagate uncertainty, manage sparse data, incorporate latent structures, and address high-dimensional parameter spaces. However, parameter inference through assimilation of observational data in these models remains challenging. While asymptotically exact Bayesian methods offer theoretical guarantees for accurate inference, they can be computationally demanding and impractical for real-time outbreak analysis. This review synthesizes recent advances in approximate Bayesian inference methods that aim to balance inferential accuracy with scalability. We focus on four prominent families: Approximate Bayesian Computation, Bayesian Synthetic Likelihood, Integrated Nested Laplace Approximation, and Variational Inference. For each method, we evaluate its relevance to epidemiological applications, emphasizing innovations that improve both computational efficiency and inference accuracy. We also offer practical guidance on method selection across a range of modeling scenarios. Finally, we identify hybrid exact approximate inference as a promising frontier that combines methodological rigor with the scalability needed for the response to outbreaks. This review provides epidemiologists with a conceptual framework to navigate the trade-off between statistical accuracy and computational feasibility in contemporary disease modeling.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube