Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
130 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Image Generation Method Based on Heat Diffusion Models (2504.19600v1)

Published 28 Apr 2025 in cs.CV and cs.AI

Abstract: Denoising Diffusion Probabilistic Models (DDPMs) achieve high-quality image generation without adversarial training, but they process images as a whole. Since adjacent pixels are highly likely to belong to the same object, we propose the Heat Diffusion Model (HDM) to further preserve image details and generate more realistic images. HDM is a model that incorporates pixel-level operations while maintaining the same training process as DDPM. In HDM, the discrete form of the two-dimensional heat equation is integrated into the diffusion and generation formulas of DDPM, enabling the model to compute relationships between neighboring pixels during image processing. Our experiments demonstrate that HDM can generate higher-quality samples compared to models such as DDPM, Consistency Diffusion Models (CDM), Latent Diffusion Models (LDM), and Vector Quantized Generative Adversarial Networks (VQGAN).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.