Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 113 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Semantic Packet Aggregation for Token Communication via Genetic Beam Search (2504.19591v1)

Published 28 Apr 2025 in eess.SP

Abstract: Token communication (TC) is poised to play a pivotal role in emerging language-driven applications such as AI-generated content (AIGC) and wireless LLMs. However, token loss caused by channel noise can severely degrade task performance. To address this, in this article, we focus on the problem of semantics-aware packetization and develop a novel algorithm, termed semantic packet aggregation with genetic beam search (SemPA-GBeam), which aims to maximize the average token similarity (ATS) over erasure channels. Inspired from the genetic algorithm (GA) and the beam search algorithm, SemPA-GBeam iteratively optimizes token grouping for packetization within a fixed number of groups (i.e., fixed beam width in beam search) while randomly swapping a fraction of tokens (i.e., mutation in GA). Experiments on the MS-COCO dataset demonstrate that SemPA-GBeam achieves ATS and LPIPS scores comparable to exhaustive search while reducing complexity by more than 20x.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.