Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
84 tokens/sec
Gemini 2.5 Pro Premium
49 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
476 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Leveraging Modified Ex Situ Tomography Data for Segmentation of In Situ Synchrotron X-Ray Computed Tomography (2504.19200v2)

Published 27 Apr 2025 in cond-mat.mtrl-sci and cs.CV

Abstract: In situ synchrotron X-ray computed tomography enables dynamic material studies, but automated segmentation remains challenging due to complex imaging artefacts and limited training data. We present a methodology for deep learning-based segmentation by transforming high-quality ex situ laboratory data to train models for binary segmentation of in situ synchrotron data, demonstrated through copper oxide dissolution studies. Using a modified SegFormer architecture, our approach achieves high segmentation performance on unseen data while reducing processing time from hours to seconds per 3D dataset. The method maintains consistent performance over significant morphological changes during experiments, despite training only on static specimens. This methodology can be readily applied to diverse materials systems, accelerating the analysis of time-resolved tomographic data across scientific disciplines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.