Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Radial restriction of spherical functions on supergroups (2504.19102v1)

Published 27 Apr 2025 in math.RT

Abstract: Using the Hopf superalgebra structure of the enveloping algebra $U(\mathfrak g)$ of a Lie superalgebra $\mathfrak=\mathrm{Lie}(G)$, we give a purely algebraic treatment of $K$-bi-invariant functions on a Lie supergroup $G$, where $K$ is a sub-supergroup of $G$. We realize $K$-bi-invariant functions as a subalgebra $\mathcal A(\mathfrak g,\mathfrak k)$ of the dual of $U(\mathfrak g)$ whose elements vanish on the coideal $\mathcal I=\mathfrak kU(\mathfrak g)+U(\mathfrak g)\mathfrak k$, where $\mathfrak k=\mathrm{Lie}(K)$. Next, for a general class of supersymmetric pairs $(\mathfrak g,\mathfrak k)$, we define the radial restriction of elements of $\mathcal A(\mathfrak g,\mathfrak k)$ and prove that it is an injection into $S(\mathfrak a)*$, where $\mathfrak a$ is the Cartan subspace of $(\mathfrak g,\mathfrak k)$. Finally, we compute a basis for $\mathcal I$ in the case of the pair $(\mathfrak{gl}(1|2), \mathfrak{osp}(1|2))$, and uncover a connection with the Bernoulli and Euler zigzag numbers.

Summary

We haven't generated a summary for this paper yet.