Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

ZipR1: Reinforcing Token Sparsity in MLLMs (2504.18579v1)

Published 23 Apr 2025 in cs.LG

Abstract: Sparse attention mechanisms aim to reduce computational overhead by selectively processing a subset of salient tokens while preserving model performance. Despite the effectiveness of such designs, how to actively encourage token sparsity of well-posed MLLMs remains under-explored, which fundamentally limits the achievable acceleration effect during inference. In this paper, we propose a simple RL-based post-training method named \textbf{ZipR1} that treats the token reduction ratio as the efficiency reward and answer accuracy as the performance reward. In this way, our method can jointly alleviate the computation and memory bottlenecks via directly optimizing the inference-consistent efficiency-performance tradeoff. Experimental results demonstrate that ZipR1 can reduce the token ratio of Qwen2/2.5-VL from 80\% to 25\% with a minimal accuracy reduction on 13 image and video benchmarks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.