2000 character limit reached
Structural Inference: Interpreting Small Language Models with Susceptibilities (2504.18274v2)
Published 25 Apr 2025 in cs.LG
Abstract: We develop a linear response framework for interpretability that treats a neural network as a Bayesian statistical mechanical system. A small perturbation of the data distribution, for example shifting the Pile toward GitHub or legal text, induces a first-order change in the posterior expectation of an observable localized on a chosen component of the network. The resulting susceptibility can be estimated efficiently with local SGLD samples and factorizes into signed, per-token contributions that serve as attribution scores. We combine these susceptibilities into a response matrix whose low-rank structure separates functional modules such as multigram and induction heads in a 3M-parameter transformer.