Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
90 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Gradient Descent as a Shrinkage Operator for Spectral Bias (2504.18207v1)

Published 25 Apr 2025 in cs.LG and cs.CV

Abstract: We generalize the connection between activation function and spline regression/smoothing and characterize how this choice may influence spectral bias within a 1D shallow network. We then demonstrate how gradient descent (GD) can be reinterpreted as a shrinkage operator that masks the singular values of a neural network's Jacobian. Viewed this way, GD implicitly selects the number of frequency components to retain, thereby controlling the spectral bias. An explicit relationship is proposed between the choice of GD hyperparameters (learning rate & number of iterations) and bandwidth (the number of active components). GD regularization is shown to be effective only with monotonic activation functions. Finally, we highlight the utility of non-monotonic activation functions (sinc, Gaussian) as iteration-efficient surrogates for spectral bias.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)