Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

Semi-Blind Strategies for MMSE Channel Estimation Utilizing Generative Priors (2504.17573v1)

Published 24 Apr 2025 in eess.SP

Abstract: This paper investigates semi-blind channel estimation for massive multiple-input multiple-output (MIMO) systems. To this end, we first estimate a subspace based on all received symbols (pilot and payload) to provide additional information for subsequent channel estimation. We show how this additional information enhances minimum mean square error (MMSE) channel estimation. Two variants of the linear MMSE (LMMSE) estimator are formulated, where the first one solves the estimation within the subspace, and the second one uses a subspace projection as a preprocessing step. Theoretical derivations show the superior estimation performance of the latter method in terms of mean square error for uncorrelated Rayleigh fading. Subsequently, we introduce parameterizations of this semi-blind LMMSE estimator based on two different conditional Gaussian latent models, i.e., the Gaussian mixture model and the variational autoencoder. Both models learn the underlying channel distribution of the propagation environment based on training data and serve as generative priors for semi-blind channel estimation. Extensive simulations for real-world measurement data and spatial channel models show the superior performance of the proposed methods compared to state-of-the-art semi-blind channel estimators with respect to the MSE.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.