Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HS-Mamba: Full-Field Interaction Multi-Groups Mamba for Hyperspectral Image Classification (2504.15612v1)

Published 22 Apr 2025 in cs.CV

Abstract: Hyperspectral image (HSI) classification has been one of the hot topics in remote sensing fields. Recently, the Mamba architecture based on selective state-space models (S6) has demonstrated great advantages in long sequence modeling. However, the unique properties of hyperspectral data, such as high dimensionality and feature inlining, pose challenges to the application of Mamba to HSI classification. To compensate for these shortcomings, we propose an full-field interaction multi-groups Mamba framework (HS-Mamba), which adopts a strategy different from pixel-patch based or whole-image based, but combines the advantages of both. The patches cut from the whole image are sent to multi-groups Mamba, combined with positional information to perceive local inline features in the spatial and spectral domains, and the whole image is sent to a lightweight attention module to enhance the global feature representation ability. Specifically, HS-Mamba consists of a dual-channel spatial-spectral encoder (DCSS-encoder) module and a lightweight global inline attention (LGI-Att) branch. The DCSS-encoder module uses multiple groups of Mamba to decouple and model the local features of dual-channel sequences with non-overlapping patches. The LGI-Att branch uses a lightweight compressed and extended attention module to perceive the global features of the spatial and spectral domains of the unsegmented whole image. By fusing local and global features, high-precision classification of hyperspectral images is achieved. Extensive experiments demonstrate the superiority of the proposed HS-Mamba, outperforming state-of-the-art methods on four benchmark HSI datasets.

Summary

We haven't generated a summary for this paper yet.