Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
32 tokens/sec
GPT-4o
87 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
435 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Unlearning Works Better Than You Think: Local Reinforcement-Based Selection of Auxiliary Objectives (2504.14418v1)

Published 19 Apr 2025 in cs.NE and stat.ML

Abstract: We introduce Local Reinforcement-Based Selection of Auxiliary Objectives (LRSAO), a novel approach that selects auxiliary objectives using reinforcement learning (RL) to support the optimization process of an evolutionary algorithm (EA) as in EA+RL framework and furthermore incorporates the ability to unlearn previously used objectives. By modifying the reward mechanism to penalize moves that do no increase the fitness value and relying on the local auxiliary objectives, LRSAO dynamically adapts its selection strategy to optimize performance according to the landscape and unlearn previous objectives when necessary. We analyze and evaluate LRSAO on the black-box complexity version of the non-monotonic Jump function, with gap parameter $\ell$, where each auxiliary objective is beneficial at specific stages of optimization. The Jump function is hard to optimize for evolutionary-based algorithms and the best-known complexity for reinforcement-based selection on Jump was $O(n2 \log(n) / \ell)$. Our approach improves over this result to achieve a complexity of $\Theta(n2 / \ell2 + n \log(n))$ resulting in a significant improvement, which demonstrates the efficiency and adaptability of LRSAO, highlighting its potential to outperform traditional methods in complex optimization scenarios.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube