Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DCFG: Diverse Cross-Channel Fine-Grained Feature Learning and Progressive Fusion Siamese Tracker for Thermal Infrared Target Tracking (2504.14311v1)

Published 19 Apr 2025 in cs.CV

Abstract: To address the challenge of capturing highly discriminative features in ther-mal infrared (TIR) tracking, we propose a novel Siamese tracker based on cross-channel fine-grained feature learning and progressive fusion. First, we introduce a cross-channel fine-grained feature learning network that employs masks and suppression coefficients to suppress dominant target features, en-abling the tracker to capture more detailed and subtle information. The net-work employs a channel rearrangement mechanism to enhance efficient in-formation flow, coupled with channel equalization to reduce parameter count. Additionally, we incorporate layer-by-layer combination units for ef-fective feature extraction and fusion, thereby minimizing parameter redun-dancy and computational complexity. The network further employs feature redirection and channel shuffling strategies to better integrate fine-grained details. Second, we propose a specialized cross-channel fine-grained loss function designed to guide feature groups toward distinct discriminative re-gions of the target, thus improving overall target representation. This loss function includes an inter-channel loss term that promotes orthogonality be-tween channels, maximizing feature diversity and facilitating finer detail capture. Extensive experiments demonstrate that our proposed tracker achieves the highest accuracy, scoring 0.81 on the VOT-TIR 2015 and 0.78 on the VOT-TIR 2017 benchmark, while also outperforming other methods across all evaluation metrics on the LSOTB-TIR and PTB-TIR benchmarks.

Summary

We haven't generated a summary for this paper yet.