Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models (2504.13534v2)

Published 18 Apr 2025 in cs.CL and cs.AI

Abstract: Chain-of-thought (CoT) reasoning boosts LLMs' (LLMs) performance on complex tasks but faces two key limitations: a lack of reliability when solely relying on LLM-generated reasoning chains and interference from natural language reasoning steps with the models' inference process, also known as the inference logic of LLMs. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation,featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo-Program Prompting Execution, which promotes greater logical rigor by guiding LLMs to execute reasoning tasks as pseudo-programs. Evaluations on nine public datasets spanning three reasoning tasks reveal significant accuracy gains--ranging from 4.0% to 44.3%--over state-of-the-art methods. Furthermore, tests on four domain-specific datasets demonstrate exceptional accuracy and efficient execution, underscoring its practical applicability and scalability.

Summary

We haven't generated a summary for this paper yet.