Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

Integration of a Graph-Based Path Planner and Mixed-Integer MPC for Robot Navigation in Cluttered Environments (2504.13372v1)

Published 17 Apr 2025 in eess.SY, cs.RO, and cs.SY

Abstract: The ability to update a path plan is a required capability for autonomous mobile robots navigating through uncertain environments. This paper proposes a re-planning strategy using a multilayer planning and control framework for cases where the robot's environment is partially known. A medial axis graph-based planner defines a global path plan based on known obstacles where each edge in the graph corresponds to a unique corridor. A mixed-integer model predictive control (MPC) method detects if a terminal constraint derived from the global plan is infeasible, subject to a non-convex description of the local environment. Infeasibility detection is used to trigger efficient global re-planning via medial axis graph edge deletion. The proposed re-planning strategy is demonstrated experimentally.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com