Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clarifying Ambiguities: on the Role of Ambiguity Types in Prompting Methods for Clarification Generation (2504.12113v2)

Published 16 Apr 2025 in cs.IR

Abstract: In information retrieval (IR), providing appropriate clarifications to better understand users' information needs is crucial for building a proactive search-oriented dialogue system. Due to the strong in-context learning ability of LLMs, recent studies investigate prompting methods to generate clarifications using few-shot or Chain of Thought (CoT) prompts. However, vanilla CoT prompting does not distinguish the characteristics of different information needs, making it difficult to understand how LLMs resolve ambiguities in user queries. In this work, we focus on the concept of ambiguity for clarification, seeking to model and integrate ambiguities in the clarification process. To this end, we comprehensively study the impact of prompting schemes based on reasoning and ambiguity for clarification. The idea is to enhance the reasoning abilities of LLMs by limiting CoT to predict first ambiguity types that can be interpreted as instructions to clarify, then correspondingly generate clarifications. We name this new prompting scheme Ambiguity Type-Chain of Thought (AT-CoT). Experiments are conducted on various datasets containing human-annotated clarifying questions to compare AT-CoT with multiple baselines. We also perform user simulations to implicitly measure the quality of generated clarifications under various IR scenarios.

Summary

We haven't generated a summary for this paper yet.