Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
90 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

RAG-VR: Leveraging Retrieval-Augmented Generation for 3D Question Answering in VR Environments (2504.08256v2)

Published 11 Apr 2025 in cs.IR, cs.AI, and cs.HC

Abstract: Recent advances in LLMs provide new opportunities for context understanding in virtual reality (VR). However, VR contexts are often highly localized and personalized, limiting the effectiveness of general-purpose LLMs. To address this challenge, we present RAG-VR, the first 3D question-answering system for VR that incorporates retrieval-augmented generation (RAG), which augments an LLM with external knowledge retrieved from a localized knowledge database to improve the answer quality. RAG-VR includes a pipeline for extracting comprehensive knowledge about virtual environments and user conditions for accurate answer generation. To ensure efficient retrieval, RAG-VR offloads the retrieval process to a nearby edge server and uses only essential information during retrieval. Moreover, we train the retriever to effectively distinguish among relevant, irrelevant, and hard-to-differentiate information in relation to questions. RAG-VR improves answer accuracy by 17.9%-41.8% and reduces end-to-end latency by 34.5%-47.3% compared with two baseline systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets