Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CDM-QTA: Quantized Training Acceleration for Efficient LoRA Fine-Tuning of Diffusion Model (2504.07998v1)

Published 8 Apr 2025 in cs.GR, cs.AI, cs.AR, and cs.CV

Abstract: Fine-tuning large diffusion models for custom applications demands substantial power and time, which poses significant challenges for efficient implementation on mobile devices. In this paper, we develop a novel training accelerator specifically for Low-Rank Adaptation (LoRA) of diffusion models, aiming to streamline the process and reduce computational complexity. By leveraging a fully quantized training scheme for LoRA fine-tuning, we achieve substantial reductions in memory usage and power consumption while maintaining high model fidelity. The proposed accelerator features flexible dataflow, enabling high utilization for irregular and variable tensor shapes during the LoRA process. Experimental results show up to 1.81x training speedup and 5.50x energy efficiency improvements compared to the baseline, with minimal impact on image generation quality.

Summary

We haven't generated a summary for this paper yet.