Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
37 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Token Level Routing Inference System for Edge Devices (2504.07878v1)

Published 10 Apr 2025 in cs.CL and cs.DC

Abstract: The computational complexity of LLM inference significantly constrains their deployment efficiency on edge devices. In contrast, small LLMs offer faster decoding and lower resource consumption but often suffer from degraded response quality and heightened susceptibility to hallucinations. To address this trade-off, collaborative decoding, in which a large model assists in generating critical tokens, has emerged as a promising solution. This paradigm leverages the strengths of both model types by enabling high-quality inference through selective intervention of the large model, while maintaining the speed and efficiency of the smaller model. In this work, we present a novel collaborative decoding inference system that allows small models to perform on-device inference while selectively consulting a cloud-based large model for critical token generation. Remarkably, the system achieves a 60% performance gain on CommonsenseQA using only a 0.5B model on an M1 MacBook, with under 7% of tokens generation uploaded to the large model in the cloud.

Summary

We haven't generated a summary for this paper yet.