Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Response Consistency in Multi-Agent LLM Systems: A Comparative Analysis of Shared and Separate Context Approaches (2504.07303v1)

Published 9 Apr 2025 in cs.MA and cs.AI

Abstract: LLMs are increasingly utilized in multi-agent systems (MAS) to enhance collaborative problem-solving and interactive reasoning. Recent advancements have enabled LLMs to function as autonomous agents capable of understanding complex interactions across multiple topics. However, deploying LLMs in MAS introduces challenges related to context management, response consistency, and scalability, especially when agents must operate under memory limitations and handle noisy inputs. While prior research has explored optimizing context sharing and response latency in LLM-driven MAS, these efforts often focus on either fully centralized or decentralized configurations, each with distinct trade-offs. In this paper, we develop a probabilistic framework to analyze the impact of shared versus separate context configurations on response consistency and response times in LLM-based MAS. We introduce the Response Consistency Index (RCI) as a metric to evaluate the effects of context limitations, noise, and inter-agent dependencies on system performance. Our approach differs from existing research by focusing on the interplay between memory constraints and noise management, providing insights into optimizing scalability and response times in environments with interdependent topics. Through this analysis, we offer a comprehensive understanding of how different configurations impact the efficiency of LLM-driven multi-agent systems, thereby guiding the design of more robust architectures.

Summary

We haven't generated a summary for this paper yet.